Última alteração: 2023-09-26
Resumo
Referências
Avery, J., & Balakrishnan, H. (2015). Predicting Airport Runway Configuration: A Discrete-Choice Modeling Approach. Eleventh USA/Europe Air Traffic Management Research and Development Seminar, (pp. 1–11). Lisbon.
Choi, S., & Kim, Y. J. (2021). Artificial neural network models for airport capacity prediction. Journal of Air Transport Management, 97, 102146. doi:https://doi.org/10.1016/j.jairtraman.2021.102146
DECEA (2015). Portaria DECEA n° 78/DGCEA, de 23 de março de 2015. Aprova a reedição do MCA 100-14, Manual que trata da 'Capacidade do Sistema de Pistas'. Boletim do Comando da Aeronautica.
Degas, A., Islam, M. R., Hurter, C., Barua, S., Rahman, H., Poudel, M., Ruscio, D., Ahmed, M. U., Begum, S., Rahman, M. A., Bonelli, S., Cartocci, G., Flumeri, G. D., Borghini, G., Babiloni, F., and Arico, P. (2022). A Survey on Artificial Intelligence (AI) and eXplainable AI in Air Traffic Management: Current Trends and Development with Future Research Trajectory. Applied Sciences, 12. doi:10.3390/app12031295
Jiao, Q.-Y., Li, N., Zheng, Z.-G., Feng, Z., Ren, G.-S., & Qiang, Y.-G. (2023). Attention Mechanism-Based Deep Learning Method for Predicting Airport Acceptance Rate: A Case Study of Hong Kong Airport. Journal of Aeronautics, Astronautics and Aviation, 55, 185–200.
Rebollo, J., Khater, S., & Coupe, W. J. (2021). A Recursive Multi-step Machine Learning Approach for Airport Configuration Prediction. AIAA AVIATION 2021 FORUM, (p. 2406). doi:10.2514/6.2021-2406
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why Should I Trust You?": Explaining the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135–-1144). New York, NY, USA: Association for Computing Machinery. doi:10.1145/2939672.2939778
Wang, Y., & Zhang, Y. (2021). Prediction of runway configurations and airport acceptance rates for multi-airport system using gridded weather forecast. Transportation Research Part C: Emerging Technologies, 125, 103049. doi:https://doi.org/10.1016/j.trc.2021.103049
Woo, C. J., Goh, S. K., Alam, S., Ferdaus, M. M., & Ellejmi, M. (2022). A runway exit prediction model with visually explainable machine decisions. 2022 International Conference on Research in Air Transportation (ICRAT 2022), (pp. 1–9).