Última alteração: 2023-10-03
Resumo
Air transport is one of the world's fastest growing markets and one of the most relevant sectors for the development of the country's economy. However, all this growth also leads to an increase in the occurrence of accidents. Birdstrike are a specific type of accident that has been a problem for aviation since its inception. Understanding the hazards or contributing factors resulting from this event is vital for the adoption of mitigating measures. Thus, the aim of this study is to propose a aviation accident model that can analyze and quantifying the impact of the main factors involved in bird strikes in commercial aircraft. For the construction and analysis of the model, the Theory of Bayesian Reliability Networks will be used, which allows the graphical representation and capture of the relationship between the model variables. The factors selected for the construction of the model are validated by the literature and in the model configuration they are divided into four environments (environment, bird, aircraft and event). Subsequently, the scenarios with and without evidence will be evaluated, evaluating the impact of each network factor and the main ones in influence in the probability of collision occurrence.
Referências
ABEAR. (2016). Voar por mais Brasil: Os benefícios da aviação nos estados. Em Associação Brasileira das Empresas Aéreas. https://abear.com.br/wp-content/uploads/2019/03/ABEAR_VoarPorMaisBrasil_2016.pdf
Allan, J. (2006). A heuristic risk assessment technique for birdstrike management at airports. Risk Analysis, 26(3), 723–729. https://doi.org/10.1111/j.1539-6924.2006.00776.x
Allan, J., Baxter, A., & Callaby, R. (2016). The impact of variation in reporting practices on the validity of recommended birdstrike risk assessment processes for aerodromes. Journal of Air Transport Management, 57, 101–106. https://doi.org/10.1016/j.jairtraman.2016.07.012
BANDEIRA, M. C. G. S. P.; CORREIA, A. R.; MARTINS, M. R. General model analysis of
aeronautical accidents involving human and organizational factors. Journal Air Transport
Management, v. 69, p. 137-146, 2018.
BANDEIRA, M. C. G. S. P.; CORREIA, A. R.; MARTINS, M. R. Method for measuring
factors that affect the performance of pilots. Transportes, v. 25, n. 2, p. 156-169, 2017.
Blokpoel, H. (1976). Bird hazards to aircraft: problems and prevention of bird/aircraft collisions. Clarke, Irwin & Co. https://canadianbirdstrike.ca/wp-content/uploads/2018/02/Blokpoel_1976-1.pdf
CENIPA. (2021). Anuário de Risco de Fauna 2011-2020. Em SANTOS, L. C. B.; SOUZA, M. D. S. Centro de Investigação e Prevenção de Acidentes Aeronáuticos.
Cleary, E. C., & Dolbeer, R. A. (2005). Wildlife Hazard Management at Airports - A Manual for Airport Personnel. Em Federal Aviation Administration: Vol. Second Edition. https://www.faa.gov/airports/airport_safety/wildlife/resources/media2005_FAA_Manual_complete.pdf
COMANDO DA AERONÁUTICA. (2020). Plano básico de gerenciamento de risco de fauna PCA 3-3. Centro de Investigação e Prevenção de Acidentes Aeronáuticos. Assessoria de Gerenciamento de Risco de Fauna.
Dolbeer, R. A. (2006). Height Distribution of Birds Recorded by Collisions with Civil Aircraft. Journal of Wildlife Management, 70(5), 1345–1350. https://doi.org/https://doi.org/10.2193/0022541X
EPL, & ONTL. (2022). Boletim de Logística: A importância do transporte aéreo para o Brasil. Em Empresa de Planejamento e Logística S.A.; Observatório Nacional de Transporte e Logística. https://ontl.epl.gov.br/publicacoes/boletins-de-logistica/
Ghazaoui, A., Lafif, M., Labzai, A., Rachik, M., & Bouyaghroumni, J. (2022). Mathematical modeling of aircraft bird strikes and optimal control strategies. International Journal of Dynamics and Control. https://doi.org/10.1007/s40435-022-00934-4
Jeffery, R. F., & Buschke, F. T. (2018). Urbanization Around an Airfield Alters Bird Community Composition, but not the Hazard of Bird-Aircraft Collision. Environmental Conservation, 46(2), 124–131. https://doi.org/10.1017/S0376892918000231
Krieg, M. L. (2001). A Tutorial on Bayesian Belief Networks (1o ed). DSTO Electronics and Surveillance Research Laboratory.
Linnell, M. A., Conover, M. R., & Ohashi, T. (1999). Biases in bird strike statistics based on pilot reports. Journal of Wildlife Management, 63, 997–1003. https://doi.org/https://doi.org/10.2307/3802814
Linnell, M. A., Conover, M. R., & Ohashi, T. J. (1996). Analysis of Bird Strikes at a Tropical Airport. Source: The Journal of Wildlife Management, 60(4), 935–945.
Nimmagadda, S., Sivakumar, S., Kumar, N., & Haritha, D. (2020). Predicting airline crash due to birds strike using machine learning. International Conference on Smart Structures and Systems (ICSSS), 1–4.https://doi.org/10.1109/AERO.2014.6836249
Oliveira, J. C. de. (2018). Análise de cenários de acidentes aéreos utilizando redes bayesianas baseadas em especialistas [Trabalho de Conclusão de Curso (Graduação)]. Instituto Tecnológico de Aeronáutica - ITA.
OLIVEIRA, H. R. B. (2017). Metodologia de Avaliação Operacional de Risco de Fauna. Em Centro de Investigação e Prevenção de Acidentes Aeronáuticos (CENIPA).
Shaw, P., & Mckee, J. (2008). Risk Assessment: quantifying aircraft and bird susceptibility to strike. https://www.worldbirdstrike.com/images/Resources/IBSC_Documents_Presentations/Brasil/IBSC28_WP01.pdf
Soldatini, C., Georgalas, V., Torricelli, P., & Albores-Barajas, Y. V. (2010). An ecological approach to birdstrike risk analysis. European Journal of Wildlife Research, 56(4), 623–632. https://doi.org/10.1007/s10344-009-0359-z
Zakrajsek, E. J., & Bissonette, J. A. (2005). Ranking the risk of wildlife species hazardous to military aircraft. Wildlife Society Bulletin, 33(1), 258–264. https://doi.org/10.2193/0091-7648