Última alteração: 2023-04-18
Resumo
A madeira por ser um material natural, originário de fontes renováveis e, portanto, de consciência ecológica e sustentável oferece uma alternativa viável para o seu uso em edificações. Devido às suas propriedades mecânicas é possível uma ampla aplicabilidade na construção civil. Por outro lado, é possível obter resistência e rigidez maiores para a madeira com a inclusão de reforços estruturais. Uma dessas técnicas utiliza elementos em Plástico Reforçado com Fibras (PRF). Neste artigo, vigas de madeira, são reforçadas com barras de PRFV e PRFC. É desenvolvida a análise teórica do comportamento mecânico da viga, analisando sua rigidez e momento resistente último. Ao final do trabalho é desenvolvido um exemplo numérico de uma viga de madeira sem reforço e também com a inclusão desses reforços. Os resultados mostraram um acréscimo tanto na resistência ao momento fletor, quanto rigidez à flexão da viga de madeira com reforço, em relação a viga sem reforços.
Palavras-chave
Referências
AHMAD, Y. Bending behavior of timber beams strengthened using fiber reinforced polymer bars and plates. 2010. Tese de Doutorado. Universiti Teknologi Malaysia.
ALAM, P.; ANSELL, M.P.; SMEDLEY, D. Mechanical repair of timber beams fractured in flexure using bonded-in reinforcements. Composites Part B: Engineering, v. 40, n. 2, p. 95-106, 2009.
AMERICAN CONCRETE INSTITUTE (ACI 440.2R-08). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. Farmington Hills, MI. 2008.
AMERICAN CONCRETE INSTITUTE (ACI 440R-96). State-of-the-Art Report on Fiber Reinforced Plastic (FRP) Reinforcement for Concrete Structures. (Reapproved in 2002). Farmington Hills, MI. 1996.
AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM D 143). Standard Test Methods for Small Clear Specimens of Timber. 2009.
AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM D 695). Standard Test Method for Compressive Properties of Rigid Plastics. 2002.
AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM D3039). Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. 2000.
BORRI, A.; CORRADI, M.; GRAZINI, A. A method for flexural reinforcement of old wood beams with CFRP materials. Composites Part B: Engineering, v. 36, n. 2, p. 143-153, 2005.
BRADY, J.F., HARTE, A.M. Flexural reinforcement of glue-laminated timber beams using prestressed FRP plates. In: Proceedings of 4th International Conference on Advanced Composites in Construction (ACIC), Edinburgh, UK, 2008.
BUCHANAN, A. Bending strength of lumber. ASCE Journal of Structural Engineering, Vol. 116, No. 5, 1990, pp.1213-1229.
BULLEIT, W.M.; SANDBERG, L. B.; WOODS, G.J. Steel-reinforced glued laminated timber. Journal of Structural Engineering, v. 115, n. 2, p. 433-444, 1989.
CORRADI, M.; RIGHETTI, L.; BORRI, A. Bond strength of composite CFRP reinforcing bars in timber. Materials, v. 8, n. 7, p. 4034-4049, 2015.
DZIUBA, T. The ultimate strength of wooden beams with tension reinforcement. Holzforschung und Holzverwertung, v. 37, n. 6, p. 115-119, 1985.
FÉDÉRATION INTERNATIONALE DU BÉTON. BULLETIN 14: Design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures. 2001.
FIORELLI, J.; DIAS, A.A. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber. Materials research, v. 6, p. 193-202, 2003.
GARCÍA, P.R.; ESCAMILLA, A.C.; GARCÍA, M.N.G. Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Composites Part B: Engineering, v. 55, p. 528-536, 2013.
GENTILE, C.; SVECOVA, D.; RIZKALLA, S.H. Timber beams strengthened with GFRP bars: development and applications. Journal of Composites for Construction, v. 6, n. 1, p. 11-20, 2002.
HERNANDEZ, R., DAVALOS, J.F., SONTI, S.S., KIM, Y., MOODY, R.C., Strength and stiffness of reinforced yellow-poplar glued-laminated beams, Research Paper FPL-RP-554, Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, US, 1997.
JOHNSSON, H.; BLANKSVÄRD, T.; CAROLIN, A. Glulam members strengthened by carbon fibre reinforcement. Materials and Structures, v. 40, n. 1, p. 47-56, 2007.
KLIGER, R., JOHANSSON, M., CROCETTI, R. Strengthening timber with CFRP or steel plates – short and long-term performance. In: Proceedings of World Conference on Timber Engineering, Miyazaki, Japan, 2008.
LI, M.; Wang, L-J.; LI, D.; Cheng, Y-L.; ADHIKARI, B. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydrate Polymers, v. 102, p. 136-143, 2014.
LI, Y.F., XIE, Y.M., TSAI, M.J. Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets. Construction and Building Materials, Vol. 23, 2009, pp.411-422.
LORENZIS, L.; SCIALPI, V.; LA TEGOLA, A. Analytical and experimental study on bonded-in CFRP bars in glulam timber. Composites Part B: Engineering, v. 36, n. 4, p. 279-289, 2005.
LORENZIS, L.; TENG, J-G. Near-surface mounted FRP reinforcement: An emerging technique for strengthening structures. Composites Part B: Engineering, v. 38, n. 2, p. 119-143, 2007.
MORALES-CONDE, M. J.; RODRÍGUEZ-LIÑÁN, C.; RUBIO-DE HITA, P. Bending and shear reinforcements for timber beams using GFRP plates. Construction and Building Materials, v. 96, p. 461-472, 2015.
NADIR, Y.; NAGARAJAN, P.; AMEEN, M.; ARIF, M.M. Flexural stiffness and strength enhancement oh horizontally glued laminated wood beams with GFRP and CFRP composite sheets. Construction and Building Materials, v. 112, pp. 547-555, 2016.
PLEVRIS, Nikolaos; TRIANTAFILLOU, Thanasis C. FRP-reinforced wood as structural material. Journal of materials in Civil Engineering, v. 4, n. 3, p. 300-317, 1992.
RAFTERY, Gary M.; WHELAN, Conor. Low-grade glued laminated timber beams reinforced using improved arrangements of bonded-in GFRP rods. Construction and building materials, v. 52, p. 209-220, 2014.
SCHOBER, K-U., HARTE, A. M., KLIGER, R., JOCKWER, R., XU, Q.; CHEN, J-F. FRP reinforcement of timber structures. Construction and Building Materials, 97, 106-118. 2015.