Portal de Conferências da UFSC, ENSUS 2023 - XI Encontro de Sustentabilidade em Projeto

Tamanho da fonte: 
Eficiência Energética em edificações comerciais: análise sistemática da conexão com os Objetivos do Desenvolvimento Sustentável e mudanças climáticas
Bianca Gasparetto Rebelatto, Amanda Salvia, Pietra Taize Bueno, Luciana Brandli, Gabriela Rodrigues

Última alteração: 2023-04-10

Resumo


Os edifícios têm um enorme papel no aumento do consumo de energia e nas emissões de CO2. As edificações também são importantes para a transição da sociedade para uma economia de baixo carbono, com maior eficiência energética e menores impactos ambientais. Esta pesquisa teve como objetivo identificar por meio de uma revisão sistemática da literatura estudos relevantes existentes sobre o tema eficiência energética em edifícios comerciais e analisar sua conexão com os Objetivos de Desenvolvimento Sustentável (ODS) e as Mudanças Climáticas. As bases de dados Web of Science e Scopus foram utilizadas com critérios de busca específicos e resultaram em 227 artigos publicados na última década. Esta pesquisa ilustra uma abordagem abrangente relacionada ao panorama da relação entre artigos com os ODS e as mudanças climáticas. Além disso, a revisão da literatura destaca exemplos de boas práticas e barreiras para a implementação da eficiência energética em edifícios comerciais comparando-os e analisando-os, mostrando suas características relevantes.


Palavras-chave


Eficiência energética; Edificações comerciais; ODS; Mudanças climáticas.

Referências


ABDEL-AAL, M. F; MAAROUF, I; EL-SAYARY, S. Wakala buildings of Mamluk era in Cairo, Egypt and how far they meet the rating criteria of LEED V4. Alexandria Engineering Journal, v. 57, p. 3793-3803, 2018. Disponível em: https://doi.org/10.1016/j.aej.2018.03.007.

 

AGENDA 2030. A Agenda 2030 e os Objetivos de Desenvolvimento Sustentável (ODS). 2017. Disponível em: http://www.agenda2030.com.br.

 

ALAZAZMEH, A; ASIF, M. Commercial building retrofitting: Assessment of improvements in energy performance and indoor air quality. Case Studies in Thermal Engineering, v. 26, 2021. Disponível em: https://doi.org/10.1016/j.csite.2021.100946.

 

ALFARIS, F; JUAIDI, A; ABDALLAH, R; PEÑA-FERNÁNDEZ, A; MANZANO-AGUGLIARO, F. Energy performance analytics and behavior prediction during unforeseen circumstances of retrofitted buildings in the arid climate. Energy Reports, v. 7, p. 6182-6195, 2021.

 

ALKAABI, N; CHO C; MAYYAS, A; AZAR, E. A data-driven modelling and analysis approach to test the resilience of green buildings to uncertainty in operation patterns. Energy Science & Engineering, v. 8, p. 4250-4269, 2020.

 

ALWAN, Z; NAWARATHNA, A; AYMAN, R; ZHU, M; ELGHAZI, Y. Framework for parametric assessment of operational and embodied energy impacts utilising BIM. Journal of Building Engineering, v. 42, 2021. https://doi.org/10.1016/j.jobe.2021.102768.

AMIRKHANI, S; BAHADORI-JAHROMI, A; MYLONA, A; GODFREY, P; COOK, D; TAHAYORI, H; ZHANG, H. Uncertainties in Non-Domestic Energy Performance Certificate Generating in the UK. Sustainability, v. 13, 2021. https://doi.org/10.3390/su13147607.

 

ASHRAE HANDBOOK. HVAC Applications. SI Edition, 2011.

 

BOXER, E; HENZE, G; HIRSCH, A. A model-based decision support tool for building portfolios under uncertainty. Automation in Construction, v. 78, p. 34-50, 2017.

 

BURLEYSON, C.D; IYER, G.; HEJAZI, M.; KIM, S.; KYLE, P.; RICE, J.S.; SMITH, A.D.; TAYLOR, Z.T.; VOISIN, N.; XIE, Y. Future western U.S. building electricity consumption in response to climate and population drivers: A comparative study of the impact of model structure. Energies, v. 208, 2020.

CAI, H; ZIRAS, C; YOU S; LI, R; HONORÉ, K; BINDNER, H. Demand side management in urban district heating networks. Applied Energy, v. 230, p. 506-518, 2018. https://doi.org/10.1016/j.apenergy.2018.08.105.

 

CAIADO et al. Towards sustainable development through the perspective of eco-efficiency - A systematic literature review. Journal of Cleaner Production, v. 165, p. 890-904, 2017

 

CAMARASA et al. Diffusion of energy efficiency technologies in European residential buildings: A bibliometric analysis. Energy & Buildings, v. 202, 2019.

 

CARLSON, K; PRESSNAIL, K. D. Value impacts of energy efficiency retrofits on commercial office buildings in Toronto. Canada Energy and Buildings, v. 162, p. 154-162. 2018. Disponível em: https://doi.org/10.1016/j.enbuild.2017.12.013.

 

CHEN et al. Optimal Control Strategies for Demand Response in Buildings under Penetration of Renewable. Energy Buildings, v. 12, p. 371, 2022.

 

DIXIT, M.K. Life cycle embodied energy analysis of residential buildings: a review of literature to investigate embodied energy parameters. Renew. Sustain. Energy Rev, v. 79, p. 390–413, 2017.

 

FONSECA, J. A; NEVAT, I; PETERS W. G. Quantifying the uncertain effects of climate change on building energy consumption across the United States. Applied Energy, v. 277, 2020.

 

FUENTES-DEL-BURGO, J.; NAVARRO-ASTOR, E.; RAMOS, N.M.M.; MARTINS, J.P. Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings. Sustainability, v. 13, 2021. https://doi.org/10.3390/su132212662.

 

GHOLAMI, H; ROSTVIK, H. N; KUMAR, N.M; CHOPRA, S.S. Lifecycle cost analysis (LCCA) of tailor-made building integrated photovoltaics (BIPV) façade: Solsmaragden case study in Norway. Solar Energy, v. 211, p. 488-502, 2020.

 

HANUS, N; WONG-PARODI, G; SMALL, M; GROSSMANN, I. The role of psychology and social influences in energy efficiency adoption. Energy efficiency, v. 11, p. 371-391, 2018.

 

INTERNATIONAL ENERGY AGENCY. Tracking Buildings, 2021. Disponível em: https://www.iea.org/reports/tracking-buildings-2021.

 

IRIBARREN et al. Life cycle assessment and data envelopment analysis approach for the selection of building components according to their environmental impact efficiency: a case study for external walls. Journal of Cleaner Production, v. 7, p. 707-716, 2015. Disponível em: https://doi.org/10.1016/j.jclepro.2014.10.073

 

KIM et al. Evaluation of energy savings potential of variable refrigerant flow (VRF) from variable air volume (VAV) in the U.S. climate locations. Energy Reports, v. 3, p. 85-93, 2017. Disponível em: https://doi.org/10.1016/j.egyr.2017.05.002.

 

LEE, C. L.; GUMULYA, N.; BANGURA, M. The Role of Mandatory Building Efficiency Disclosure on Green Building Price Premium: Evidence from Australia Buildings, v. 12, 2022. https://doi.org/10.3390/buildings12030297.

 

LEVY, Y; ELLIS, T. J. Informing science journal a systems approach to conduct an effective literature review in support of information systems research. 2006. Disponível em: http://www.scs.ryerson.ca/aferworn/courses/CP8101/CLASSES/ConductingLiteratureReview.pdf .

 

LI et al. How Climate Change Impacts Energy Load Demand for Commercial and Residential Buildings in a Large City in Northern China. Polish Journal of Environmental Studies, v. 27(5), p. 2133-2141, 2018. Disponível: https://doi.org/10.15244/pjoes/79439

 

LI, M.; GUI, G.; LIN, Z.; JIANG, L.; PAN, H.; WANG, X. Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings. Sustainability, v. 10, 2018.

 

LING, Z; TAO, Q; ZHENG, J; XIONG, P; LIU, M; ZIAO, Z; GANG, W. A Nonintrusive Load Monitoring Method for Office Buildings Based on Random Forest. Buildings, v. 11, 2021.

 

LIU, Y; LIU T; WANG, B; XU, M. Developing a methodology for the ex-post assessment of Building Energy Efficiency Special Planning in Beijing during the 12th Five-Year Plan” period. Journal of Cleaner Production, v. 216, p. 552-569, 2019.

 

MAFIMISEBI, B. I; JONES, K; NWAUBANI, S; SENNAROGLU, B. Procedural tool for analysing building energy performance: structural equation modelling protocol. International Journal of Environmental Science and Technology, v. 17 p. 2875–2888, 2020. Disponível em: https://doi.org/10.1007/s13762-020-02708-x.

 

MENG, T; HSU, D; HAN, A. T. Estimating Energy Savings from Benchmarking Policies in New York City. Proceedings of the ICE – Energy, v. 133, 2017. DOI: 10.1016/j.energy.2017.05.148

 

MORGAN, D. T; DALY, T; GALLAGHER, J. MCNABOLA, A. Reducing energy consumption and increasing filter life in HVAC systems using an aspiration efficiency reducer: Long-term performance assessment at full-scale. Journal of Building Engineering, v. 12 p. 267–274, 2017.

 

MORTAZAVIGAZAR, A; WAHBA, N; NEWSHAM, P; TRIHARTA, M; ZHENG, P; CHEN, T; RISMANCHI, B. Application of Artificial Neural Networks for Virtual Energy Assessment. Energies, v. 14, 2021. https://doi.org/10.3390/en14248330.

 

MUKHTAR, M.; AMEYAW, B.; YIMEN, N.; ZHANG, Q.; BAMISILE, O.; ADUN, H.; DAGBASI, M. Building Retrofit and Energy Conservation/ Efficiency Review: A Techno-Environ- Economic Assessment of Heat Pump System Retrofit in Housing Stock. Sustainability 2021, 13, 983. https://doi.org/10.3390/su13020983

 

NOH, B; SON, J; PARK, H; CHANG, S. In-Depth Analysis of Energy Efficiency Related Factors in Commercial Buildings Using Data Cube and Association Rule Mining. Sustainability, v. 9, 2017.

 

PAINEL INTERNACIONAL SOBRE MUDANÇAS CLIMÁTICAS – IPCC. Relatório especial. 48a Sessão. Incheon, 2018. Disponível em: https://www.ipcc.ch/site/assets/uploads/2019/07/SPM-Portuguese-version.pdf.

 

RAJAPAKSHA, U. Heat Stress Pattern in Conditioned Office Buildings with Shallow Plan Forms in Metropolitan Colombo. Buildings, v. 9, p. 35, 2019. Disponível em: https://doi.org/10.3390/buildings9020035

 

RAZAK et al. The Effects of Financial Performance on Stock Returns: Evidence of Machine and Heavy Equipment Companies in Indonesia. Research in World Economy, 2020.

 

SALEM, R; BAHADORI-JAHROMI, A; MYLONA, A; GODFREY, P; COOK, D. Energy performance and cost analysis for the nZEB retrofit of a typical UK hotel. Journal of Building Engineering, V. 31, 2020.

 

SEELEY, C. C; DHAKAL, S. Energy Efficiency Retrofits in Commercial Buildings: An Environmental, Financial, and Technical Analysis of Case Studies in Thailand. Energies, v. 14, p. 2571, 2021. Disponível em: https://doi.org/10.3390/en14092571.

 

 

SEIFHASHEMI, M; CAPRA, B. R; MILLER, W; BELL. The potential for cool roofs to improve the energy efficiency of single storey warehouse-type retail buildings in Australia: A simulation case study. Energy and Buildings, v. 158, p. 1393-1403, 2018 Disponível em: https://doi.org/10.1016/j.enbuild.2017.11.034.

 

SHERMAN, R.; NAGANATHAN, H.; PARRISH, K. Energy Savings Results from Small Commercial Building Retrofits in the US. Energies, v. 14, 2021 Disponível em: https://doi.org/10.3390/en14196207.

 

SONG, S; LENG, H; XU, H; GUO, R; ZHAO, Y. Impact of Urban Morphology and Climate on Heating Energy Consumption of Buildings in Severe Cold Regions. International Journal of

Environmental Research and Public Health, v. 17, 2020. doi:10.3390/ijerph17228354.

THYER, S; THOMAS, S; MCCLINTOCK, C; RIDD, M. Optimising energy use in an existing commercial building: a case study of Australia’s Reef HQ Aquarium. Energy Efficiency, v. 11, p.147–168, 2018. 10.1007/s12053-017-9556-x.

 

TOUZANI, S; GRANDERSON, J; FERNANDES, S. Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy and Buildings, v. 158, p. 1533-1543, 2018. DOI: 10.1016/j.enbuild.2017.11.039.

 

US Department of energy. Energy efficiency and renewable energy. Zero Energy Buildings. Disponível em: https://www.energy.gov/eere/buildings/zero-energy-buildings>.

 

VIEGAS et al. Critical attributes of Sustainability in Higher Education: a categorization, 2016.

 

VOSSOS, V.; GERBER, D.; BENNANI, Y.; BROWN, R; MARNAY, C. Techno-economic analysis of DC power distribution in commercial buildings. Applied Energy, v. 230, 663-678, 2018.

 

WALKER et al. Accuracy of different machine learning algorithms and added-value of predicting aggregated-level energy performance of commercial buildings. Energy & Buildings, 2020.

 

WANG et al. Occupancy prediction through Markov based feedback recurrent neural network (M-FRNN) algorithm with WiFi probe technology. Building and Environment, v.138, p. 160-170, 2018. Disponível em:  https://doi.org/10.1016/j.buildenv.2018.04.034.

 

WONG, I, L; KRÜGER, E. Comparing energy efficiency labelling systems in the EU and Brazil: Implications, challenges, barriers and opportunities. Energy Policy, v. 109 p. 310–323, 2017.

 

WU, Y; FLEMMER, C. Glass Curtain Wall Technology and Sustainability in Commercial Buildings in Auckland, New Zealand. International Journal of Built Environment and Sustainability, v. 7, p. 57-65, 2020.

 

YU, S; TAN, Q; EVANS, M; KYLE, P; VU, L; PATEL P. Improving building energy efficiency in India: State-level analysis of building energy efficiency policies. Energy Policy, v. 110, p. 331-341, 2017.

 

ZHONG et al. The evolution and future perspectives of energy intensity in the global building sector 1971 e 2060. Journal of Cleaner Production, v. 305,


Texto completo: XML